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Quasiadiabatic analysis for ionization of a particle in a periodically perturbed é(x) potential
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We study an ionization process for a particle bound by an attraéfixe potential of a certain depth defined
on a finite lattice under an external periodic force. lonization coincides with the time when first two time
dependent energy eigenvalues get close to each other. We use a slow driving force away from the resonance
frequency. We also observe intermittent high frequency oscillation which can be analyzed with two level

approximation.
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I. INTRODUCTION

PACS nuner02.50-r, 03.65—w, 31.15-p

From now on we seh=7%. This system has one bound state

and an infinite number of discrete states. The wave function
The ionization process is a transition from bound to freefor the bound state is given by

states of a system and it is of importance in many areas of
physics. Quantum description of atoms can be most sensible

in predicting parameters necessary for ionization processes.‘ﬁ"(x): 1—4kLexp —2kL)—exp —4«L) [exp(—

It is not clear, however, what the conditions are for a time
dependent external field to ionize an atom when the field is
beyond the perturbation regime. Floquet theory, numerical

solutions of the time dependent Schimger equation are Wherego and« are related by the equation

known approaches for this problem.

We study the time evolution of the wave function of a
particle bound by an attractiv@ potential of a certain depth
under an external periodic forcirfd]. We use a nonpertur-
bative method 2], where for a given time, thus, for a fixed
value of the external forcing, the eigenvalues and the
eigenspectrum are known. For a frozen value of the external

K
x[x))
—exp(—2xL)exp |X|)], 3)
h2
9o=1y K coth kL),
h2,2 (4)
Ee= = Sm>

forcing for a given time, the Hamiltonian has an adiabaticin which E, is the energy for the bound state. For discrete
spectrum parametrized by the frozen external potentialstates, the wave functions are written as

When the energy levels approach each other, the system

shows an extreme nonadiabatic behavior. In this paper, we 1 )
show an ionization process by way of this method. ——F—————[exp(—ikq|x])
The particle in this system is confinedxia(—L,L). This 5 /L— Ko
can be directly applicable to a systems of quantum dots K(2)+ kﬁ
where electrons are usually confined in a finite dimension
and the energy levels are discrete. The Hamiltonian for our —exp(—2ik,L)exp(ika|x])], (5)
system is given by
where
p2
H=%—go[l+esin(wt)]5(x), (1) Mgy
Ko="5
h2
whereq is the depth of theS potential,e is the amplitude of
an external driving force, and is the driving frequency. We ) 2Kk
first consider an energy spectrum when there is no time de- sin(2k,L)= K2 (6)
pendent periodic forcing, i.e=0. Due to the finite dimen- 0" ™n
sion of the system, we apply boundary conditions by 2
KU =Ky
cog2k,L)=——.
#(TL)=0, " K2+ k2
H(01)=¢(07), (2)  The energy for eack, is given byEkn=h2kﬁ/2m.
If we introduce the time dependent forcing, i.e# 0, we
can set
, s 2mgy¢(0)
¢'(07)=¢' (07 )=———.

h2
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9’ =go[ 1+ esin(wt)]. (7)
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For a given instant of time=t’, we have a value af’. The * o
energy spectrum can be recalculated based'omt every iha, >, an(t)dn(x,t)= > an(t)dn(x,t)
instant, the dynamics can be described by the eigenspectrum n=0 n=0
that depends on the given time this new eigenspectrum. d dg’

With giveng’, ¢,(x) is the wave function for the bound +a,(t) —n(X,t) ——
state andE,. is the energy state for the bound state. The dg’ dt
transcendental relationship for the eigenvalue is witlsub- -
stituted fork, andg’ for gq in Eq. (4). ¢/ (X)’s are the wave _ T 4\

" 2 En(g)an(Ddn(x,0)- (10

functions for discrete states wittf, instead ofk, in Eq. (6).

r__ ! 2
Welnalssgc??r?/vens]r?g/\:/] Mo representations of the wave func-USin.g the_orthonormality property for the eigenbasis, and the
tion, where in one picture, the evolution is described by arelatlonshlp[z]
fixed eigenfunction set, and in the other, the dynamics can be
viewed in time dependent eigenbasis. The time dependent fa (%,1) 8(X) Brr(X,t)
eigenbasis are the eigenfunctions for the Hamiltionian pa- ~ d - ) me
rametrized by the external forcing at each time. This idea is f ¢n(x,t)d—g¢m(x,t)— E. (g )—En(9")
very similar to the Schidinger picture, versus the interaction " " (11)
picture. Time dependent energy levels in the Hamiltonian
system can get close to each other, but do not cross eaete obtain a set of ordinary differential equations for the am-
other [3]. When the levels become close, we observe thelitudes for the evolution of the system, i.e.,
nontrivial energy mixing behaviors. We focus on the energy
levels varying with a parametrized external forcing. We cap- (K k| SO0 k" )*

P U
ture the ionization behavior when the time dependent energy a=— FE"'a_ E an , (12
n=0

levels for the bound state and the first excited state approach E. —Ex,
each other. We show the dynamics can be reduced to a two-
level approach when the two levels are close. ; / I\ *
. . ~ | ~ ~<kn,KO|5(X)|K > .
In Sec. I, we show a result of the first few amplitudes of a, =—E,a +a !
the wave function whew is comparable to one. The ioniza- noh B —Ey,
tion occurs as the time varying energy levels get close. The .
time evolution was calculated with many levels and com- 2 ~ (Kn, gl 8(X)[Knr k) . , 13
pared with the approximation with two-levels only. We re- LA Ay Ex —E, g’ (13
: N o

port an intermittent high frequency oscillation during the ex-
change of energy levels. We have a conclusion in Sec. IV. » ~ . )
where g’ =gpew cost), a is the amplitude for the bound
Il. QUASIADIABATIC VERSUS. DIRECT TIME state g@p=a), and ay,'s arg the amplltudgs for the d|screte
DEPENDENT PICTURE states. They are the amplitudes for the eigenstates which are
stationary for a give=t’. We call the stateguasiadibatic
The time evolution for a quantum system is given by thestates We can prove that
Schralinger equation. For a frozen value af =gg[1

+ e sin(wt)], for a given timet=t", one must first solve the B =
stationary problem [a(n) |2+ [a (0]?=1, (14)
n
ihae (1) =[Ho+H' (1) W (t')=EW(t"), or all time.
/ If we use the amplitudes for the eigenfunctiapg(x) for
Ho=p'2m, ®) H, for all time, the amplitudes for the eigenfunctions evolve

according to
H(t")=—g"a(x),
iho, U (t)=[Ho+H'(t)]¥(t). (15
whereH (t')=Hg(t") +H'(t") is the time dependent Hamil-
tonian for the system. The wave function for evolution canW(t) is expanded into the eigenbasis féy of which eigen-
be expanded in an eigenbasis setgf+ H'(t’), such that  values areE, ,Ey 's, such that

©
©

V(0= 2 a1 dn(x0). 9) V()= an(t)dn(X). (16)

n= n=0

The eigenvalues arE,(g’)’s. By inserting Eqs(9) to (8),  With the similar procedures to the above aag=a, we
we obtain obtain a set of differential equations faf(t)’s.
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o i
a=—HEKaJrHgoesin(wt)a<K|5(x)|K>
- 5
i ] (2]
+ R 9oesin(ot) X a (D(x| 80 [kn ko), (17 E
= o
S
i i 2
ékn=—HEkn-l-Hgoesin(a)t)akn<kn,KO|5(X)|K) %
5
i . o
+ R 9oesinot) X a (K0l A(X)Kn, x0).
(18) 02 04 06 0'8Time1 12 14 16 1.8

Note, for the summation in the second equation, we do not FIG. 1. Evolution for amplitudes for the quasiadiabatic and the
exclude the terrn#m. This direct time dependentethod direct timg dependent methods. The ionization occurs after about
uses the fixed eigenfunctions for all time, and the only time""é€ Periods. The parameters agg=2.5,¢=05,L=1,h=m
dependent parts are amplitudes. Since our time depende
driving force is periodic, for every period of the driving, the
amplitudes fordirect time dependennethod coincide with
those fromquasiadiabatianethod, i.e., for the driving period
of T,

ﬁtl’ w=11.74. The quasiadiabatic amplitude for the ground state
+, and the first excited state are shown for every period of the
driving forcing. The solid line is for the ground state, and the
dashed line is for the first excited state from the direct time depen-
dent method. Results from the two different methods coincide at
every period whemg' =g,. For the direct time dependent method,

~ we used the ground and the first five excited levels, and for the
a(t)y=af(t), (19 quasiadiabatic method we used the time dependent ground state and

the first ten excited levels.

ay (=2 (1), (20) . o
the occupation probability oscillates between two levels. We
for mod(t,T)=0. useda(t), a (1), anda(t), a (t) fork=1,...,10, and for
clarity, we only show the probability for the wave function to
Il. RESULTS be in the ground state.
) ) , We observe a time region, where the occupation probabil-
The equivalence of the two representations in the abovgy oscillates at a high frequency Figga#tand 4b). This can

chapter is shown for the parameters @y=2.5€=0.5L e analyzed with two-level approximation af(t), a,(t),
=1l,0=11.74in Fig. 1. We see a brief ionization after about; o

three periods(The probability that the particle stays in an
excited state decays afterwandshe solid line is the occu-
pation probability for the ground state in time, and the
dashed line is the occupation probability for the first excited
state in the direct time dependent method. The results ar
compared with the quasiadiabatic picture whers are val-
ues for occupation probability for the ground state, a¢'sl

are values for occupation probability for the first excited
state in every period up to three periods. They coincide at
every driving period wherg’=g,. The amplitudes from
Egs.(12) and(17) are solved numerically.

Two levels dynamics with a driving of the resonance fre-
quency is well explained in Reff4]. We are interested in the ol
ionization process away from resonance frequency. The driv-
ing frequency is far smaller than the resonance frequency -12 0T 07 03 04 05 05 07 08 09
We set the parameters such that the quasiadiabatic enerc, Time (Periods)

levels get very close in one period. The parameters We US€ [ 2, The quasiadiabatic energy level in tiffier one periog.

are go=2.5€=0.9L. =10h=m=10=0.01. In Fig. 2, the  The parameters arg,=2.5,e=0.9,L=10,h=m=1, w=0.01.
ground energy level gets close to the first excited state. Thghe pottom solid line is the ground state, and from bottom up, we
resonance frequency between the ground and the first excitelow the first, second, and third excited levels. When the ground
state iswg;=0.1174. With a slow driving, the ionization state approaches the first excited state closely in every period, we
takes place when the quasienergy levels become close. W&pect ionization. The driving frequency used is much slower than
show the probability of the amplitude for the ground state forthe resonance frequency between the ground and the first excited
ten periods in Fig. 3. The ionization is not permanent, andevel.

Probability for Ground St
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FIG. 3. Time evolution of the amplitude for the ground state 0.72
from the direct time dependent methddr ten periods The ion-
ization occurs when the first two quasiadiabatic levels approach
closely. The parameters agy=2.5,¢6=0.9,L=10,h=m=1, 0
=0.01.

(-]
e
3
3
T

0.71}

. 0.705 |
o=~ wodo T igoe sin(wt)[(0] 8(x)[0)ag+(0] 5(x)|1)a,],
(21

A= —wja;+igge sin(wt)[ (1] 8(x)|0)ag+(1|8(x)[1)ay],

0.7}

0.695

Probability for Ground Stat

where (1] 8(x)|0) = ¢(x) 8(x) do(x)dx, and (0] 5(x)|1) 0891

=(1|8(x)|0)*. Since this high frequency part is a result of 0.685

| 112 1174 7176 7178 T12

mixing of the two levels, the natural frequency®f, w, are (b) Time (Periods)

not relevant for finding how this high frequency arises. We

assume thatw;=w,=, and introduce a matrixa FIG. 4. (a) The high frequency region is observed intermittently.
=(ay,a;) andb=e"'ta, The equations reduce to The frequency can be estimated with a two-level approximation.

The high frequency behavior slows down before another ionization
occurs.(b) The high frequency region zoom-in is shown.

@ gue sinan| (©120010 <0|5<x>|1>)b o
di” 9SO (4 50010y (1]a00[1)) 1 0
"Oz(o 1)’
The solution for the equation is given by
0 1
bo) igoel1—cos(wt)/ ]M(b°(0)> 01_(1 0)’
— al9p€ cos(wt)/ w 23
(bl e by(0) )’ 3 (26)
0 —i
where the matrixM is given by 2=l o]
:(<0|a<x>|o> <0|5<x>|1>) o 1 o0
(118()|0) (1]a(x)[1) ‘73_(0 —1)'

and the initial conditions are given byby(0),b,(0)] Once we obtain right coefficients fer, we have the solu-
=[ay(0),a,(0)]. We can see that the slowdown of the high tion. The solution from this calculation far,,a; gives the
frequency occurs when the tefrh— cos@t)/w] in the expo-  period of 2.37. Our % 10 level numerical simulation gives a
nent approaches zero. The exponent can be expressed byeriod of 1.67. The driving period is 628.
2X 2 matrix using spinor§4], i.e.,

IV. CONCLUSION

a-o — .
exdi(\a-o)]=coga\)oy+isinan)—, (25 We observe an ionization process from the bound state to
a one of the continuum level in &(x) potential. We use the
ground level and the first ten excited levels for level dynamic
wherea=|a ando is given by calculation. When the two quasiadiabatic energy leviils
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bound, the first excited one@pproach each other, the energy ionization processes. This is due to the interaction of differ-

mixing is possible. The evolution of the system can beent states. We are able to show the estimate of the high

viewed from eigenstates which are fixed in all time, or fromfrequency and subsequent slowdown with a simple two level

the eigenstates which change according to time. The quasigynamics approximation.

diabatic energy levels are quite useful in terms of predicting The purpose of this paper is to show a new way of so|Ving

the ionization proceSS. The amplitudes in many levels fromonization prob|ems in quantum Systems and g|v|ng an in-

the direct time dependent method were calculated by numergight for use Of t|me Varying energy |eve|s_ Since the energy

cally solving a set of ordinary differential equations. levels are not stationary in the time dependent Hamiltonian,
Due to the finite size of the system, we did not observayhen the quasienergy levels approach each other, one can

the permanant ionization. A brief ionization is followed by a ghserve the ionization.

decay of the wave function back into the ground state. It is

not clear what the conditions are for a complete ionization.
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