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Quasiadiabatic analysis for ionization of a particle in a periodically perturbed d„x… potential

Mee H. Choi and Ronald F. Fox
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

~Received 7 June 2002; published 21 October 2002!

We study an ionization process for a particle bound by an attractived(x) potential of a certain depth defined
on a finite lattice under an external periodic force. Ionization coincides with the time when first two time
dependent energy eigenvalues get close to each other. We use a slow driving force away from the resonance
frequency. We also observe intermittent high frequency oscillation which can be analyzed with two level
approximation.
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I. INTRODUCTION

The ionization process is a transition from bound to fr
states of a system and it is of importance in many area
physics. Quantum description of atoms can be most sens
in predicting parameters necessary for ionization proces
It is not clear, however, what the conditions are for a tim
dependent external field to ionize an atom when the fiel
beyond the perturbation regime. Floquet theory, numer
solutions of the time dependent Schro¨dinger equation are
known approaches for this problem.

We study the time evolution of the wave function of
particle bound by an attractived potential of a certain depth
under an external periodic forcing@1#. We use a nonpertur
bative method@2#, where for a given time, thus, for a fixe
value of the external forcing, the eigenvalues and
eigenspectrum are known. For a frozen value of the exte
forcing for a given time, the Hamiltonian has an adiaba
spectrum parametrized by the frozen external poten
When the energy levels approach each other, the sys
shows an extreme nonadiabatic behavior. In this paper,
show an ionization process by way of this method.

The particle in this system is confined inxe(2L,L). This
can be directly applicable to a systems of quantum d
where electrons are usually confined in a finite dimens
and the energy levels are discrete. The Hamiltonian for
system is given by

H5
p2

2m
2g0@11e sin~vt !#d~x!, ~1!

whereg0 is the depth of thed potential,e is the amplitude of
an external driving force, andv is the driving frequency. We
first consider an energy spectrum when there is no time
pendent periodic forcing, i.e.,e50. Due to the finite dimen-
sion of the system, we apply boundary conditions

f~2
1L !50,

f~01!5f~02!, ~2!

f8~01!2f8~02!52
2mg0f~0!

\2
.
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From now on we seth5\. This system has one bound sta
and an infinite number of discrete states. The wave func
for the bound state is given by

fk~x!5
k

124kLexp~22kL !2exp~24kL !
@exp~2kuxu!

2exp~22kL !exp~kuxu!#, ~3!

whereg0 andk are related by the equation

g05
h2

m
k coth~kL !,

~4!

Ek52
h2k2

2m
,

in which Ek is the energy for the bound state. For discre
states, the wave functions are written as

fk
n
~x!5

1

2AL2
k0

k0
21kn

2

@exp~2 iknuxu!

2exp~22iknL !exp~ iknuxu!#, ~5!

where

ko5
mg0

h2
,

sin~2knL !5
2knk0

k0
21kn

2
, ~6!

cos~2knL !5
k022kn

2

k0
21kn

2
.

The energy for eachkn is given byEkn
5h2kn

2/2m.

If we introduce the time dependent forcing, i.e.,eÞ0, we
can set

g85g0@11e sin~vt !#. ~7!
©2002 The American Physical Society24-1
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For a given instant of timet5t8, we have a value ofg8. The
energy spectrum can be recalculated based ong8. At every
instant, the dynamics can be described by the eigenspec
that depends on the given time this new eigenspectrum.

With giveng8, fk8(x) is the wave function for the boun
state andEk8 is the energy state for the bound state. T
transcendental relationship for the eigenvalue is withk8 sub-
stituted fork, andg8 for g0 in Eq. ~4!. fk

n8
(x)’s are the wave

functions for discrete states withkn8 instead ofkn in Eq. ~6!.
We also setko85mg08/h

2.
In Sec. II, we show two representations of the wave fu

tion, where in one picture, the evolution is described by
fixed eigenfunction set, and in the other, the dynamics can
viewed in time dependent eigenbasis. The time depen
eigenbasis are the eigenfunctions for the Hamiltionian
rametrized by the external forcing at each time. This idea
very similar to the Schro¨dinger picture, versus the interactio
picture. Time dependent energy levels in the Hamilton
system can get close to each other, but do not cross
other @3#. When the levels become close, we observe
nontrivial energy mixing behaviors. We focus on the ene
levels varying with a parametrized external forcing. We ca
ture the ionization behavior when the time dependent ene
levels for the bound state and the first excited state appro
each other. We show the dynamics can be reduced to a
level approach when the two levels are close.

In Sec. III, we show a result of the first few amplitudes
the wave function whene is comparable to one. The ioniza
tion occurs as the time varying energy levels get close.
time evolution was calculated with many levels and co
pared with the approximation with two-levels only. We r
port an intermittent high frequency oscillation during the e
change of energy levels. We have a conclusion in Sec. I

II. QUASIADIABATIC VERSUS. DIRECT TIME
DEPENDENT PICTURE

The time evolution for a quantum system is given by t
Schrödinger equation. For a frozen value ofg85g0@1
1e sin(vt)#, for a given timet5t8, one must first solve the
stationary problem

ih] tC~ t !5@H01H8~ t8!#C~ t8!5EnC~ t8!,

H05p/2m, ~8!

H~ t8!52g8d~x!,

whereH(t8)5H0(t8)1H8(t8) is the time dependent Hamil
tonian for the system. The wave function for evolution c
be expanded in an eigenbasis set ofH01H8(t8), such that

C~ t !5 (
n50

`

ãn~ t !f̃n~x,t !. ~9!

The eigenvalues areEn(g8)’s. By inserting Eqs.~9! to ~8!,
we obtain
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ih] t (
n50

`

ãn~ t !f̃n~x,t !5 (
n50

`

ȧ̃n~ t !f̃n~x,t !

1ãn~ t !
d

dg8
f̃n~x,t !

dg8

dt

5 (
n50

`

En~g8!ãn~ t !f̃n~x,t !. ~10!

Using the orthonormality property for the eigenbasis, and
relationship@2#

E f̃n~x,t !
d

dg8
f̃m~x,t !5

E f̃n~x,t !d~x!f̃m~x,t !

En~g8!2Em~g8!
,

~11!

we obtain a set of ordinary differential equations for the a
plitudes for the evolution of the system, i.e.,

ȧ̃52
i

h
Ek8ã2 (

n50

`

ãkn

^kn ,k08ud~x!uk8&*

Ek82Ekn

, ~12!

ȧ̃kn
5

i

h
Ekn

ãkn
1ã

^kn ,k08ud~x!uk8&*

Ek82Ekn

ġ8

2 (
n8Þn,n851

`

ãkn8

^kn ,k08ud~x!ukn8 ,k08&

Ekn
2Ekn8

ġ8, ~13!

where ġ85g0ev cos(vt), ã is the amplitude for the bound
state (ã05ã), and ãkn

’s are the amplitudes for the discre
states. They are the amplitudes for the eigenstates which
stationary for a givet5t8. We call the statesquasiadibatic
states. We can prove that

uã~ t !u21(
n

`

uãkn
~ t !u251, ~14!

for all time.
If we use the amplitudes for the eigenfunctionsfn(x) for

H0 for all time, the amplitudes for the eigenfunctions evol
according to

ih] tC~ t !5@H01H8~ t !#C~ t !. ~15!

C(t) is expanded into the eigenbasis forH0 of which eigen-
values areEk ,Ekn

’s, such that

C~ t !5 (
n50

`

an~ t !fn~x!. ~16!

With the similar procedures to the above anda05a, we
obtain a set of differential equations foran(t)’s.
4-2
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ȧ52
i

h
Eka1

i

h
g0e sin~vt !a^kud~x!uk&

1
i

h
g0e sin~vt ! (

n51

`

akn
~ t !^kud~x!ukn ,k0&, ~17!

ȧkn
52

i

h
Ekn

1
i

h
g0e sin~vt !akn

^kn ,k0ud~x!uk&

1
i

h
g0e sin~vt ! (

m51

`

akn
^kn ,k0ud~x!km ,k0&.

~18!

Note, for the summation in the second equation, we do
exclude the termnÞm. This direct time dependentmethod
uses the fixed eigenfunctions for all time, and the only ti
dependent parts are amplitudes. Since our time depen
driving force is periodic, for every period of the driving, th
amplitudes fordirect time dependentmethod coincide with
those fromquasiadiabaticmethod, i.e., for the driving period
of T,

a~ t !5ã~ t !, ~19!

akn
~ t !5ãkn

~ t !, ~20!

for mod(t,T)50.

III. RESULTS

The equivalence of the two representations in the ab
chapter is shown for the parameters forg052.5,e50.5,L
51,v511.74 in Fig. 1. We see a brief ionization after abo
three periods.~The probability that the particle stays in a
excited state decays afterwards.! The solid line is the occu-
pation probability for the ground state in time, and t
dashed line is the occupation probability for the first exci
state in the direct time dependent method. The results
compared with the quasiadiabatic picture where1 ’s are val-
ues for occupation probability for the ground state, andX’s
are values for occupation probability for the first excit
state in every period up to three periods. They coincide
every driving period wheng85g0. The amplitudes from
Eqs.~12! and ~17! are solved numerically.

Two levels dynamics with a driving of the resonance f
quency is well explained in Ref.@4#. We are interested in the
ionization process away from resonance frequency. The d
ing frequency is far smaller than the resonance freque
We set the parameters such that the quasiadiabatic en
levels get very close in one period. The parameters we
are g052.5,e50.9,L510,h5m51,v50.01. In Fig. 2, the
ground energy level gets close to the first excited state.
resonance frequency between the ground and the first ex
state isv0150.1174. With a slow driving, the ionization
takes place when the quasienergy levels become close
show the probability of the amplitude for the ground state
ten periods in Fig. 3. The ionization is not permanent, a
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the occupation probability oscillates between two levels.
useda(t), akn

(t), andã(t), ãkn
(t) for k51, . . .,10, and for

clarity, we only show the probability for the wave function
be in the ground state.

We observe a time region, where the occupation proba
ity oscillates at a high frequency Figs. 4~a! and 4~b!. This can
be analyzed with two-level approximation ofa0(t), a1(t),
i.e.,

FIG. 1. Evolution for amplitudes for the quasiadiabatic and
direct time dependent methods. The ionization occurs after ab
three periods. The parameters areg052.5, e50.5, L51, h5m
51, v511.74. The quasiadiabatic amplitude for the ground st
1, and the first excited state3 are shown for every period of the
driving forcing. The solid line is for the ground state, and t
dashed line is for the first excited state from the direct time dep
dent method. Results from the two different methods coincide
every period wheng85g0. For the direct time dependent metho
we used the ground and the first five excited levels, and for
quasiadiabatic method we used the time dependent ground stat
the first ten excited levels.

FIG. 2. The quasiadiabatic energy level in time~for one period!.
The parameters areg052.5, e50.9, L510, h5m51, v50.01.
The bottom solid line is the ground state, and from bottom up,
show the first, second, and third excited levels. When the gro
state approaches the first excited state closely in every period
expect ionization. The driving frequency used is much slower th
the resonance frequency between the ground and the first ex
level.
4-3
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ȧ052v0a01 ig0e sin~vt !@^0ud~x!u0&a01^0ud~x!u1&a1#,
~21!

ȧ152v1a11 ig0e sin~vt !@^1ud~x!u0&a01^1ud~x!u1&a1#,

where ^1ud(x)u0&5*f1(x)d(x)f0(x)dx, and ^0ud(x)u1&
5^1ud(x)u0&* . Since this high frequency part is a result
mixing of the two levels, the natural frequency ofv1 ,v2 are
not relevant for finding how this high frequency arises. W
assume that v15v25V, and introduce a matrixa
5(a0 ,a1) andb5e2 iVta. The equations reduce to

d

dt
b5 ig0e sin~vt !S ^0ud~x!u0& ^0ud~x!u1&

^1ud~x!u0& ^1ud~x!u1&
D b. ~22!

The solution for the equation is given by

S b0

b1
D 5eig0e[12cos(vt)/v]MS b0~0!

b1~0!
D , ~23!

where the matrixM is given by

M5S ^0ud~x!u0& ^0ud~x!u1&

^1ud~x!u0& ^1ud~x!u1&
D ~24!

and the initial conditions are given by@b0(0),b1(0)#
5@a0(0),a1(0)#. We can see that the slowdown of the hig
frequency occurs when the term@12cos(vt)/v# in the expo-
nent approaches zero. The exponent can be expressed
232 matrix using spinors@4#, i.e.,

exp@ i ~la•s!#5cos~al!s01 i sin~al!
a•s

a
, ~25!

wherea5uau ands is given by

FIG. 3. Time evolution of the amplitude for the ground sta
from the direct time dependent method~for ten periods!. The ion-
ization occurs when the first two quasiadiabatic levels appro
closely. The parameters areg052.5, e50.9, L510, h5m51, v
50.01.
04612
y a

s05S 1 0

0 1D ,

s15S 0 1

1 0D ,

~26!

s25S 0 2 i

i 0 D ,

s35S 1 0

0 21D .

Once we obtain right coefficients fors, we have the solu-
tion. The solution from this calculation fora0 ,a1 gives the
period of 2.37. Our 1110 level numerical simulation gives
period of 1.67. The driving period is 628.

IV. CONCLUSION

We observe an ionization process from the bound stat
one of the continuum level in ad(x) potential. We use the
ground level and the first ten excited levels for level dynam
calculation. When the two quasiadiabatic energy levels~the

h

FIG. 4. ~a! The high frequency region is observed intermittent
The frequency can be estimated with a two-level approximati
The high frequency behavior slows down before another ioniza
occurs.~b! The high frequency region zoom-in is shown.
4-4
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bound, the first excited one! approach each other, the ener
mixing is possible. The evolution of the system can
viewed from eigenstates which are fixed in all time, or fro
the eigenstates which change according to time. The qua
diabatic energy levels are quite useful in terms of predict
the ionization process. The amplitudes in many levels fr
the direct time dependent method were calculated by num
cally solving a set of ordinary differential equations.

Due to the finite size of the system, we did not obse
the permanant ionization. A brief ionization is followed by
decay of the wave function back into the ground state. I
not clear what the conditions are for a complete ionizati
The occupation probability of the ground state and the fi
excited state evolve in a very complicated manner in tim
The evolution is not fully understood.

Occasional high frequency oscillations occur after par
04612
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g
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e

s
.
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l

ionization processes. This is due to the interaction of diff
ent states. We are able to show the estimate of the h
frequency and subsequent slowdown with a simple two le
dynamics approximation.

The purpose of this paper is to show a new way of solv
ionization problems in quantum systems and giving an
sight for use of time varying energy levels. Since the ene
levels are not stationary in the time dependent Hamiltoni
when the quasienergy levels approach each other, one
observe the ionization.
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